An in-depth analysis shows a hidden atherogenic lipoprotein profile in non-diabetic chronic kidney disease patients


Por: Bermudez-Lopez, M, Forne, C, Amigo, N, Bozic, M, Arroyo, D, Bretones, T, Alonso, N, Cambray, S, Del Pino, MD, Mauricio, D, Gorriz, JL, Fernandez, E, Valdivielso, JM

Publicada: 3 jul 2019 Ahead of Print: 1 may 2019
Resumen:
Background: Chronic kidney disease (CKD) is an independent risk factor for atherosclerotic disease. We hypothesized that CKD promotes a proatherogenic lipid profile modifying lipoprotein composition and particle number. Methods: Cross-sectional study in 395 non-diabetic individuals (209 CKD patients and 186 controls) without statin therapy. Conventional lipid determinations were combined with advanced lipoprotein profiling by nuclear magnetic resonance, and their discrimination ability was assessed by machine learning. Results: CKD patients showed an increase of very-low-density (VLDL) particles and a reduction of LDL particle size. Cholesterol and triglyceride content of VLDLs and intermediate-density (IDL) particles increased. However, low-density (LDL) and high-density (HDL) lipoproteins gained triglycerides and lost cholesterol. Total-Cholesterol, HDL-Cholesterol, LDL-Cholesterol, non-HDL-Cholesterol and Proprotein convertase subtilisin-kexin type (PCSK9) were negatively associated with CKD stages, whereas triglycerides, lipoprotein(a), remnant cholesterol, and the PCSK9/LDL-Cholesterol ratio were positively associated. PCSK9 was positively associated with total-Cholesterol, LDL-Cholesterol, LDL-triglycerides, LDL particle number, IDL-Cholesterol, and remnant cholesterol. Machine learning analysis by random forest revealed that new parameters have a higher discrimination ability to classify patients into the CKD group, compared to traditional parameters alone: area under the ROC curve (95% CI), .789 (.711, .853) vs .687 (.611, .755). Conclusions: non-diabetic CKD patients have a hidden proatherogenic lipoprotein profile.

Filiaciones:
Bermudez-Lopez, M:
 IRBLleida, Vasc & Renal Translat Res Grp, Spain & Spanish Res Network Renal Dis RedlnRen IS, Lleida, Spain

Forne, C:
 IRBLleida, Biostat Unit, Lleida, Spain

 Univ Lleida, Dept Basic Med Sci, Lleida, Spain

Amigo, N:
 Biosfer Teslab SL, Reus, Spain

Bozic, M:
 IRBLleida, Vasc & Renal Translat Res Grp, Spain & Spanish Res Network Renal Dis RedlnRen IS, Lleida, Spain

Arroyo, D:
 IRBLleida, Vasc & Renal Translat Res Grp, Spain & Spanish Res Network Renal Dis RedlnRen IS, Lleida, Spain

 Hosp Univ Severo Ochoa, Serv Nefrol, Leganes, Spain

Bretones, T:
 Hosp Univ Puerta Mar, Dept Cardiol, Cadiz, Spain

Alonso, N:
 Hosp Badalona Germans Trias & Pujol, Endocrinol & Nutr Dept, Badalona, Spain

 Ctr Biomed Res Diabet & Associated Metab Dis CIBE, Barcelona, Spain

Cambray, S:
 IRBLleida, Vasc & Renal Translat Res Grp, Spain & Spanish Res Network Renal Dis RedlnRen IS, Lleida, Spain

Del Pino, MD:
 Ctr Hosp Torrecardenas, Dept Nephrol, Almeria, Spain

Mauricio, D:
 IRBLleida, Vasc & Renal Translat Res Grp, Spain & Spanish Res Network Renal Dis RedlnRen IS, Lleida, Spain

 Ctr Biomed Res Diabet & Associated Metab Dis CIBE, Barcelona, Spain

 Hosp Santa Creu & Sant Pau, JEndocrinol & Nutr Dept, Barcelona, Spain

Gorriz, JL:
 Univ Valencia, Hosp Clin Univ Valencia, INCLIVA, Lleida, Spain

Fernandez, E:
 IRBLleida, Vasc & Renal Translat Res Grp, Spain & Spanish Res Network Renal Dis RedlnRen IS, Lleida, Spain

Valdivielso, JM:
 IRBLleida, Vasc & Renal Translat Res Grp, Spain & Spanish Res Network Renal Dis RedlnRen IS, Lleida, Spain
ISSN: 14728222





EXPERT OPINION ON THERAPEUTIC TARGETS
Editorial
TAYLOR & FRANCIS LTD, 2-4 PARK SQUARE, MILTON PARK, ABINGDON OR14 4RN, OXON, ENGLAND, Reino Unido
Tipo de documento: Article
Volumen: 23 Número: 7
Páginas: 619-630
WOS Id: 000469716600001
ID de PubMed: 31100024

MÉTRICAS